NeuroLocale: Intelligent Local Search for Edge AI and IoT

Author by BoltUIX Team in AI & Machine Learning May 26, 2025 89
NeuroLocale Banner

Overview

NeuroLocale is a fine-tuned transformer model built on boltuix/NeuroBERT for intent classification, designed to interpret natural language queries and suggest 120+ local business categories. With ~50 MB footprint, itโ€™s optimized for edge AI, IoT devices, and mobile applications, achieving 94.26% accuracy. Ideal for local search, chatbots, and smart assistants, NeuroLocale delivers real-time, offline-capable solutions.

NeuroLocale transforms local search by understanding user intent with precision and speed.

BoltUIX Team, AI Innovation 2025

Key Features

  • Intent-Driven: Understands queries like โ€œMy dog is sickโ€ to suggest ๐Ÿพ pet stores or ๐Ÿฉบ clinics.
  • High Accuracy: 94.26% test accuracy across 122 cases.
  • 120+ Categories: Covers diverse local businesses, from ๐Ÿ’ผ accounting to ๐Ÿฆ’ zoos.
  • Edge-Optimized: Fast inference (<50ms) on resource-constrained devices.
  • Offline Ready: No internet required.
  • Extensible: Fine-tunable for additional NLP tasks.

Use Cases

  • Local Search Apps: Suggest ๐Ÿพ pet stores or ๐Ÿฉบ clinics based on user needs.
  • Chatbots: Enhance customer service with context-aware recommendations.
  • E-Commerce: Guide users to nearby ๐Ÿ’ผ accounting firms or ๐Ÿ“š bookstores.
  • Travel Apps: Recommend ๐Ÿจ hotels or ๐Ÿ—บ๏ธ attractions.
  • Healthcare: Direct users to ๐Ÿฅ hospitals or ๐Ÿ’Š pharmacies.
  • Smart Assistants: Enable hands-free local search on IoT devices.

Supported Categories

NeuroLocale supports 120+ local business categories, including:

  • ๐Ÿ’ผ Accounting Firm
  • โœˆ๏ธ Airport
  • ๐ŸŽข Amusement Park
  • ๐Ÿ  Aquarium
  • ๐Ÿ–ผ๏ธ Art Gallery
  • ๐Ÿฅ Bakery
  • ๐Ÿฆ Bank
  • ๐Ÿป Bar
  • ๐Ÿ’ˆ Barber Shop
  • ๐Ÿ–๏ธ Beach
  • ...and many more (full list available on Hugging Face)

Extract all categories programmatically:


from transformers import AutoModelForSequenceClassification

# Load model
model = AutoModelForSequenceClassification.from_pretrained("boltuix/NeuroLocale")

# Extract labels
label_mapping = model.config.id2label
supported_labels = sorted(label_mapping.values())

# Print categories
print("Supported Categories:", supported_labels)
                        

Getting Started

Inference Example


from transformers import pipeline

# Load classifier
classifier = pipeline("text-classification", model="boltuix/NeuroLocale")

# Predict intent
result = classifier("Where can I see ocean creatures behind glass?")
print(result)  # Output: [{'label': 'aquarium', 'score': 0.999}]
                        

Installation


pip install transformers torch pandas scikit-learn tqdm
                        

Requires Python 3.8+, ~50 MB for model.

Performance Metrics

Tested on 122 cases with 94.26% accuracy (115/122 correct):

MetricValue
Accuracy94.26%
F1 Score (Weighted)~0.94 (estimated)
Processing Time<50ms per query

Example results:

QueryExpected CategoryPredicted CategoryConfidenceStatus
How do I catch the early ride to the runway?โœˆ๏ธ Airportโœˆ๏ธ Airport0.997โœ…
Are the roller coasters still running today?๐ŸŽข Amusement Park๐ŸŽข Amusement Park0.997โœ…
Where can I see ocean creatures behind glass?๐Ÿ  Aquarium๐Ÿ  Aquarium1.000โœ…

Fine-Tuning Guide

Fine-tune NeuroLocale on custom datasets:


from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
import torch

# Load dataset (CSV with text and label columns)
dataset = load_dataset("csv", data_files="custom_intent_dataset.csv")

# Initialize tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("boltuix/NeuroLocale")
model = AutoModelForSequenceClassification.from_pretrained("boltuix/NeuroLocale")

# Tokenize dataset
def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Training arguments
training_args = TrainingArguments(
    output_dir="./neurolocale_finetuned",
    eval_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
    report_to="none"
)

# Initialize trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"]
)

# Train
trainer.train()

# Save model
model.save_pretrained("./neurolocale_finetuned")
tokenizer.save_pretrained("./neurolocale_finetuned")
                        

Other Capabilities

While optimized for intent classification, NeuroLocaleโ€™s NeuroBERT base supports fine-tuning for:

  • Question Answering: Answer queries like โ€œWhatโ€™s the nearest hospital?โ€
  • Sentiment Analysis: Detect positive/negative sentiment in user queries.
  • Semantic Similarity: Cluster similar intents for advanced routing.
  • Named Entity Recognition: Extract entities (e.g., locations, organizations).

Dataset Details

  • Source: Open-source and synthetic queries (e.g., ChatGPT, Grok).
  • Format: CSV with text and label columns.
  • Categories: 120+ local businesses.
  • Size: Model footprint ~50 MB.

Comparison to Other Solutions

SolutionCategoriesAccuracyNLP StrengthOpen Source
NeuroLocale120+94.26%StrongYes
Google Maps API~100~85%ModerateNo
Yelp API~80~80%WeakNo
OpenStreetMapVariesVariesWeakYes

Frequently Asked Questions (FAQ)

NeuroLocale is a transformer model for intent classification, mapping queries to 120+ local business categories for edge AI and IoT.
It supports 120+ categories, from accounting firms to zoos, as listed in the supported categories section.
Yes, itโ€™s designed for offline use on edge devices.
Yes, it can be fine-tuned for QA, sentiment analysis, semantic similarity, or other NLP tasks.
Runs on CPUs, NPUs, and microcontrollers with ~50 MB storage.

License

Apache-2.0 License: Free to use. See LICENSE.

Support & Community

Conclusion

NeuroLocale revolutionizes local search with 94.26% accuracy across 120+ categories, optimized for edge AI and IoT. From smart assistants to travel apps, itโ€™s your go-to solution for intent-driven search in 2025. Explore it on Hugging Face!

Boltuix .store