NeuroLocale is a fine-tuned transformer model built on boltuix/NeuroBERT for intent classification, designed to interpret natural language queries and suggest 120+ local business categories. With ~50 MB footprint, itโs optimized for edge AI, IoT devices, and mobile applications, achieving 94.26% accuracy. Ideal for local search, chatbots, and smart assistants, NeuroLocale delivers real-time, offline-capable solutions.
NeuroLocale transforms local search by understanding user intent with precision and speed.
NeuroLocale supports 120+ local business categories, including:
Extract all categories programmatically:
from transformers import AutoModelForSequenceClassification
# Load model
model = AutoModelForSequenceClassification.from_pretrained("boltuix/NeuroLocale")
# Extract labels
label_mapping = model.config.id2label
supported_labels = sorted(label_mapping.values())
# Print categories
print("Supported Categories:", supported_labels)
from transformers import pipeline
# Load classifier
classifier = pipeline("text-classification", model="boltuix/NeuroLocale")
# Predict intent
result = classifier("Where can I see ocean creatures behind glass?")
print(result) # Output: [{'label': 'aquarium', 'score': 0.999}]
pip install transformers torch pandas scikit-learn tqdm
Requires Python 3.8+, ~50 MB for model.
Tested on 122 cases with 94.26% accuracy (115/122 correct):
Metric | Value |
---|---|
Accuracy | 94.26% |
F1 Score (Weighted) | ~0.94 (estimated) |
Processing Time | <50ms per query |
Example results:
Query | Expected Category | Predicted Category | Confidence | Status |
---|---|---|---|---|
How do I catch the early ride to the runway? | โ๏ธ Airport | โ๏ธ Airport | 0.997 | โ |
Are the roller coasters still running today? | ๐ข Amusement Park | ๐ข Amusement Park | 0.997 | โ |
Where can I see ocean creatures behind glass? | ๐ Aquarium | ๐ Aquarium | 1.000 | โ |
Fine-tune NeuroLocale on custom datasets:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
import torch
# Load dataset (CSV with text and label columns)
dataset = load_dataset("csv", data_files="custom_intent_dataset.csv")
# Initialize tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("boltuix/NeuroLocale")
model = AutoModelForSequenceClassification.from_pretrained("boltuix/NeuroLocale")
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir="./neurolocale_finetuned",
eval_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
report_to="none"
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"]
)
# Train
trainer.train()
# Save model
model.save_pretrained("./neurolocale_finetuned")
tokenizer.save_pretrained("./neurolocale_finetuned")
While optimized for intent classification, NeuroLocaleโs NeuroBERT base supports fine-tuning for:
text
and label
columns.Solution | Categories | Accuracy | NLP Strength | Open Source |
---|---|---|---|---|
NeuroLocale | 120+ | 94.26% | Strong | Yes |
Google Maps API | ~100 | ~85% | Moderate | No |
Yelp API | ~80 | ~80% | Weak | No |
OpenStreetMap | Varies | Varies | Weak | Yes |
Apache-2.0 License: Free to use. See LICENSE.
NeuroLocale revolutionizes local search with 94.26% accuracy across 120+ categories, optimized for edge AI and IoT. From smart assistants to travel apps, itโs your go-to solution for intent-driven search in 2025. Explore it on Hugging Face!